Solutions of 9 were not stable over time. Thus the uv spectrum disappeared over several hours at room temperature, while the more concentrated nmr solutions were generated at -48° and the signals assigned to 9 disappeared on warming the solution to -10° . This concentration dependence suggests a dimerization or polymerization of 9, although well-defined adducts could not be obtained from the decomposition.

An approach to an isomeric trienone was undertaken by treating chlorodiene 1 with N-bromosuccinimide in CCl₄ under free radical conditions. A mixture^{6,7} of allylic bromides 10 was obtained which was converted with silver tosylate and DMSO, followed by sodium bicarbonate, to chlorodienone⁶ 11, bp $40-42^{\circ}$ (0.7 Torr). By contrast with 7 this resisted all attempts at HX elimination, as did the bromodienone⁶ corresponding to 11 (derived from the bromodiene⁶ related to 1). Thus treatment of 11 with strong bases such as DBN or NaH at reflux for many hours led to recovered starting material, and even with an excess of lithium diethylamide some starting material was recovered. The principal product from this latter reaction is, however, the dimer⁶ 13 obtained from an aldol re-

action; this dimer could be converted to the corresponding acetate,⁶ mp 134–135°. Thus when the enolate derived from 11 is in fact formed with base, it does not lose chloride ion but instead undergoes a bimolecular aldol addition reaction.

These data indicate clearly that the bicyclotropones 9 and 12 do not share the stability of tropone itself. While 9 seems to have some stability on solution and is thus perhaps a more stable molecule than is cyclopentadienone, 12 seems to be extremely unstable, as evidenced by the failure of the enolate derived from 11 to lose chloride ion. Thus the properties of 9 and 12 seem to reflect the stabilities of their component rings, rather than that of the peripheral trienone system.

Acknowledgment. Support of this work by the National Institutes of Health is gratefully acknowledged.

(7) W. Washburn, Ph.D. Thesis, Columbia University, 1971.

R. Breslow,* M. Oda, T. Sugimoto Department of Chemistry, Columbia University New York, New York 10027 Received November 28, 1973

Karplus-Type Dependence of Vicinal ¹¹⁹Sn-¹³C Coupling¹

Sir:

(|v|)

It has been reported recently that the magnitude of ${}^{3}J$ (¹¹⁹SnCC¹³C) is dependent upon the dihedral angle between the coupling nuclei.¹ In the present communication, we report the ¹³C nmr parameters for a series of compounds which incorporate a range of SnCCC dihedral angles and define more precisely the relationship between ${}^{3}J(SnCCC)$ and the dihedral angle.

The new compounds studied are exo- and endo-2norbornyl, 1- and 2-adamantyl, and 3-nortricyclyltrimethylstannane (I-V), respectively. All yielded satis-

factory elemental analysis and ¹H nmr spectra. The ¹³C chemical shift and coupling constant data are given in Table I. Assignments were made by (i) off-resonance decoupled spectra, (ii) the magnitude of ${}^{1}J({}^{119}Sn-{}^{13}C)$ for ¹³C nuclei directly attached to ¹¹⁹Sn, (iii) comparisons of the chemical shift with the parent hydrocarbons and of the shifts of ¹³C resonances on substitution in other hydrocarbons, (iv) the relative magnitudes of vicinal $J(^{119}SnCC^{13}C)$ coupling constants, and (v) general considerations of compression effects on ¹³C nuclei in γ positions.

(v)

Pure I (from exo-2-bromonorbornane and (CH₃)₃-SnLi)² was examined in conjunction with a mixture of I and II (from³ the Grignard reagent of exo-2-bromonorbornane and $(CH_3)_3SnCl$). Note that C_7 in I (γ effect -0.1 ppm) is upfield from C₇ in II (γ effect +2.2 ppm) by 2.3 ppm, while C₆ in II (γ effect -0.4 ppm) is upfield from C_6 in I (γ effect +3.3 ppm) by 3.9 ppm.⁴ (The corresponding γ effects for C_7 are 3.7 ppm in exo-2methylnorbornane and +0.2 in endo-2-methylnorbornane. For C₆, γ effects of -1.1 and -7.7 ppm are observed for exo- and endo-2-methylnorbornanes, respectively.)⁵ Because of difficulties in differentiating C_3 and

(1) (a) This is paper II of the series "¹³C Fourier Transform Nmr Study of the Organotin Compounds," by the group from Albany; Paper I of this series: H. G. Kuivila, J. L. Considine, R. J. Mynott, and R. H. Sarma, J. Organounetal. Chem., 55, C11 (1973). (b) See also D. Doddrel, M. L. Bullpitt, C. J. Moore, C. W. Ford, W. Kitching, W. Adcock, and B. D. Gupta, Tetrahedron Lett., 665 (1973).

(2) For method used, see (a) G. S. Koermer, M. L. Hall, and T. G. Traylor, J. Amer. Chem. Soc., 94, 7206 (1972); (b) H. G. Kuivila, J. L. Considing, and J. D. Kennedy, *ibid.*, **94**, 7202 (1972). (3) F. R. Jensen and K. L. Nakamaye, *J. Amer. Chem. Soc.*, **88**, 3437

(1966).

(4) Notice that the γ -shifts are slightly negative for situations of strong compressional interaction with (CH3)3Sn, but positive (i.e., to lower field) otherwise. These γ -shifts are small considering the data for the exo, endo-2-methylnorbornanes.

(5) Data from G. C. Levy and G. L. Nelson, "Carbon-13 Nuclear Magnetic Resonance," Wiley-Interscience, New York, N. Y., 1972, p 46, and references therein.

	C 1	C_2	C۵	C ₄	C_{5}	C ₆	C7	C ₈	C ₉	C10	C_{Me}
_					Chem	ical Shifts					
Ι	40.3	27.6	37.6	34.9	29.5	34.0	38.6				-10.8
II	40.9	28.7	33.8	36.9	30.3	30.1	40.9				-10.2
III	28.3	42.2	29.5	38.0	29.5	38.0	29.5	42.2	42.2	38.0	-13.0
IV	32.4	40.0	32.4	36.6	29.1	38.3	28.7	41.0	36.6	41.0	-9.5
V	10.0	13.9	31.8	33.2	32.9	9.9	35.0				-10.4
					Couplin	g Constants	sd				
Ι	9.0	416	12.0	23.0	N.o.*	69.0	~ 0.0				N.d./
II	10.0	432	N.d. ⁷	22.0	N.o. ^e	34-38	59				N.d./
III	451.70	12.2	51.10	7.3	51.19	7.3	51.10	12.2	12.2	7.3	290.4ª
IV	12.3	406.69	12.3	8.5	N.o.*	N.o. ^e	6.5 ^h	60.0^{i}	8.5^i	60.0^{i}	295.8°
v	53.60	6.0	411.89	12.4	9.7	8.0	57.84				313.90

^a Compounds I, II, and III were examined at 15.18 and 22.63 MHz, and III, IV, and V at 25.16 MHz, in the Fourier transform mode. Samples were usually neat or concentrated solutions in CS₂ or cyclohexane. ^b The carbon-numbering system as shown on the structural formulas. ^c Chemical shifts quoted relative to TMS (± 0.1 ppm). Positive values indicate nuclei downfield (less shielded than TMS). ^d Coupling constants in Hertz quoted relative to the center of unresolved^{119,117} Sn satellites. ^e N.o., not observed. [/] N.d., not determined. ^e Quoted for ¹¹⁹Sn coupling. ^h ± 2.0 Hz. ⁱ ± 1.5 Hz. Other couplings ± 1.0 Hz or better.

Table II. Magnitudes of Vicinal ¹¹⁹SnCC¹³C Coupling Constants and Associated Dihedral Angles

Compd	С	J, Hz	θ , ^b deg	Compd	С	J, Hz	θ , ^b deg
Ι	4	23	120	V	1	53.6	154
	6	69	170		5	9.7	67
	7	$\simeq 0$	85		6	8.0	83
II	4	22	120		7	57.8	174
	6	36 ± 2	35	VIª	3,5	51.9	165
	7	59	160		4	65.8	180
III	3,5,7	51.1	180	VIIª	2,3	67.5	175
IV	4,9	8.5	70		5,6	11.9	56
	8,10	60.0	180				

^a Data previously reported in ref 1. ^b $\theta = \text{SnC}_{\alpha}\text{C}_{\beta}\text{C}$ dihedral angle about C_{α} - C_{β} bond.

 C_6 in II, a range of 34–38 Hz is given for C_6 ; even though not determined exactly, this value demonstrates the large increase in $|{}^{3}J({}^{119}SnC{}^{13}C)|$ as θ decreases. In IV, C_4 and C_9 on the one hand and C_8 and C_{10} on the other are distinguished by (i) the resonance of the former being 4.4 ppm to higher field and (ii) the vicinal coupling to C_4 and C_9 falling in the range previously found for gauche nuclei, while that for C_8 and C_{10} is in the range for trans nuclei.¹ In V, except for the three methyl carbons there are no symmetrically equivalent carbon nuclei; all seven resonances were resolved. The resonances of C_1 , C_2 , and C_6 are found to higher field than the others, as expected for cyclopropylcarbons (compare the parent-nortricyclene⁶); C_2 experiences a deshielding β effect (+4.0 ppm) while C₁ and C₆ show much smaller γ shifts of +0.1 and 0.0. This is consistent with results from other compounds.⁶ Since C_1 and C_7 are nearly trans to tin and C_6 and C_5 are approaching gauche, the four carbons are hence distinguished, since the smaller coupling identifies C_5 and C_6 .

The magnitudes of the vicinal ¹¹⁹Sn-¹³C coupling constants and the associated dihedral angles are collected in Table II. This also contains data for 1- and 7norbornyltrimethylstannanes (VI and VII, respectively) previously reported.¹ These data were processed through a computer program to fit a curve of the form $J = A + B \cos \theta + C \cos 2\theta$. The best equation with the minimum mean and mean-square deviations was found to be $J = 30.4 - 7.6 \cos \theta + 25.2 \cos 2\theta$; the mean deviation was 3.75 Hz. The computer drawn curve is shown in Figure I. If it is assumed that the

Figure 1. Magnitudes of ${}^{3}J({}^{119}SnCC{}^{13}C)$ plotted against the dihedral angle θ , plotted from data given in Table II. Dihedral angles are estimated from Dreidig models or, in the case of V, from the structural data for 4-chloronortricyclene (J. F. Chiang, C. F. Wilcox, Jr., and S. H. Bauer, *Tetrahedron*, 25, 369 (1969)).

vicinal coupling has the same relative sign for all, then the curve is similar to that given by the Karplus equation.⁷ This finding should be of great benefit to the study of the structure and conformation of organotin compounds. In this connection it may be noted that angular dependence has been established for *three-bond*

(7) M. Karplus, J. Amer. Chem. Soc., 85, 2870 (1963).

⁽⁶⁾ Unpublished results of the authors.

coupling across, PCCC,⁸ POCC,⁹ POCH,¹⁰ CCCH,¹¹ and HCCN¹² and for four-bond coupling across HC-COP.¹³⁻¹⁶ Preliminary measurements¹⁷ indicate that such relationships may exist for coupling across CCCC and MCCC where M is either lead or mercury.

Acknowledgment. This research was supported by the Australian Research Grants Committee and by the

(8) R. B. Wetzel and G. L. Kenyon, J. Chem. Soc., Chem. Commun., 287 (1973).

(9) I. C. P. Smith, H. H. Mantsch, R. D. Lapper, R. Deslauriers and T. Schleich, Conformation of Biological Molecules and Polymers. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, Vol. V, 381 (1973).

(10) L. D. Hall and R. B. Malcolm, Chem. Ind. (London), 92 (1968).

(11) R. Wasylishan and T. Schaefer, Can. J. Chem., 50, 2710 (1972).

(12) R. Wasylishan and T. Schaefer Can. J. Chem., 50, 2989 (1972).

(13) L. D. Hall and R. B. Malcolm, *Can. J. Chem.*, 50, 2092 (1972).
(14) L. D. Hall and R. B. Malcolm, *Can. J. Chem.*, 50, 2102 (1972).

(14) L. D. Hall and K. B. Matcolli, Can. J. Chem., 50, 2102 (1972)(15) B. Donaldson and L. D. Hall, Can. J. Chem. 50, 2111 (1972).

(16) R. H. Sarma, R. J. Mynott, F. E. Hruska, and D. J. Wood, J. Amer. Chem. Soc., 95, 6457 (1973).

(17) Unpublished results with I. Burfitt and D. Praeger.

National Science Foundation under Grants GB28015, B028015-001, and GP29165X and by the National Cancer Institute of the National Institutes of Health under Grant CA 12462. We thank M. &T. Chemicals, Inc., for gifts of organotin compounds.

(18) Queen Elizabeth Research Fellow, 1973-1974.

David Doddrell,¹⁸ Ivor Burfitt

Department of Organic Chemistry, University of New England Armidale, New South Wales, Australia

> William Kitching,* Maxwell Bullpitt Department of Chemistry, University of Queensland St. Lucia, 4067 Queensland, Australia

Che-Hung Lee, Richard J. Mynott, John L. Considine Henry G. Kuivila,* Ramaswamy H. Sarma*

Department of Chemistry, State University of New York at Albany Albany, New York 12222 Received August 31, 1973

Additions and Corrections

Stable Carbocations. CXXX. Carbon-13 Nuclear Magnetic Resonance Study of Halocarbenium Ions. Degree of Halogen "Back-Donation" and Relative Stability of Halocarbenium Ions [J. Amer. Chem. Soc., 94, 3551 (1972)]. By GEORGE A. OLAH,* Y. K. Mo, and Y. HALPERN, Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106.

The ¹³C nmr shift of the carbocation center in the dimethylfluorocarbenium ion $[(CH_3)_2C^+F]$ was reported, due to a computational error made using the indor method, as -142.7 (from CS₂). The correct value is -89.1 (as also shown by recent FT measurements).

Conformational Analysis. XXVI. Conformational Equilibria in 5,5-Disubstituted 1,3-Dioxanes [J. Amer. Chem. Soc., 94, 8072 (1972). By ERNEST L. ELIEL* and RUDYARD M. ENANOZA, Department of Chemistry, University of Notre Dame, Notre Dame, Indiana 46556].

Professor Anteunis has informed us that Table I in ref 26, part 2 does not correspond to our Table II inasmuch as it refers to the equilibrium $B \rightleftharpoons A$, not $A \rightleftharpoons B$ in Scheme II. Therefore the ΔG° values for the last five entries in our Table II taken from ref 26 should read -0.19, -0.03, -0.32, -0.38, -0.17 kcal/mol, and the signs of ΔG° in Table II do agree with those in Table III, entries 2, 5, 6, and 7. Moreover, in the case of 5-methyl-5-phenyl-1,3-dioxane the nmr method of ref 26 does lead to a clear choice as to which isomer predominates, based on the chemical shift of the 5-methyl group below the coalescence temperature.

We have also found that the infared data reported on page 8076, Scheme III were subject to a calibration error; the correct frequencies are 27, 3435 cm⁻¹; 28, 3450, 3434 cm⁻¹. We are not sure whether the NH absorption in 27 indicates intramolecular H bonding; rather the double absorption in 28 may be due to cistrans isomerism of the amide. Configurational assignments are not affected by this uncertainty since they rest on the dipole determination of 19. We thank Dr. W. F. Bailey for experimental assistance and Dr. Jan Stanek (Prague, Czechoslovakia) for helpful correspondence.

Excited State Carbonyl Species from the Thermal Decomposition of 3,3-Dibenzyl-1,2-dioxetane [J. Amer. Chem. Soc., 94, 9277 (1972)]. By WILLIAM H. RICHARD-SON,* FREDERICK C. MONTGOMERY, and MARY B. YELVINGTON, Department of Chemistry, California State University, San Diego, San Diego, California 92115.

Figure 1, line 4 should read "bibenzyl" rather than "dibenzyl ketone."

Hydrolysis of Imidate Esters Derived from Weakly Basic Amines. Influences of Structure and pH on the Partitioning of Tetrahedral Intermediates [J. Amer. Chem. Soc., 95, 1253 (1973)]. By TADASHI OKUYAMA, TERRY C. PLETCHER, DAVID J. SAHN, and GASTON L. SCHMIR,* Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06510.

In Table I, the heading of column 5 should read $10^{-7}k_7$; the heading of column 7 should read 10^{-4} . (k_5/K_a) . The uppermost line in Figure 6 should be labeled $10^{-5}k_7$.

Stable Carbocations. CXLII. 1-Acenaphthenium Ions [J. Amer. Chem. Soc., 95, 3698 (1973)]. By GEORGE A. OLAH,* GAO LIANG, and PHILIP WESTERMAN, Department of Chemistry, Case Western Reserve University, Cleveland Ohio 44106.